
BGE Scripting – How it works now
(a little biased view)

ENGINE

start

NEXT
FRAME

stop

Init python

Release python

Update
scenes

Somehow some
Python is called

The current interface
The current interface to scripting is distributed over different
objects. Each object defines its own set of python bridges to
native functions. The overall scripting api is the sum of all
these little bits.

ENGINE

DSI
Dynamic script interfacestart

Load dll & start

NEXT
FRAME

Update

IScriptInterface

loads/unloads
and updates
the scripts as

necessary

STOP
Stop

Tells the scripts
To stop and
Release all

Data they might
Be holding

IScriptInterface

IScriptInterface

BGE Dynamic Script Interface

The script interface is defined in a dynamic library.
The engine loads this library when it starts.
The library exports three functions:

start(IScriptInterface*)
update()
stop()

The IScriptInterface is an abstract C++ class.
That class declares the functions that the engine provides to the scripting world.
The class contains the entire interface available to the scripting interface.
The DSI acts as a bridge between those functions and the scripting runtime.

BGE Dynamic Script Interface – A little detail

The IScriptInterface is a opengl style collection of functions that operates on identifiers.

Class IScriptInterface
{
public:

long findObjectByName(std::string& name);
void setObjectLocalLinearVelocity(long objectid, float x, float y, float z);
void getObjectLocalLinearVelocity(long objectid, float* xyzBuffer);
long getParent(long childId);
...a lot of functions...

}

The engine will provide an implementation of this class using the available data structures to
find objects and the existing set of functions to access the properties of each element.

The dynamic library receives an instance of this IscriptInterface when it is started – by the engine:

//bgescripting.so
IScriptInterface* si;
void start(IScriptInterface* scriptInterfaceInstance)
{

si = scriptInterfaceInstance;
}

The update and the stop methods depends on the vm of choice (subliminal...jvm), as well as the actual
scripts loading and running. The implementation will expose the functions provided by the
IScriptInterface instance, coming from the engine, to the vm languages, according to the
specifications of the vm itself.
For the jvm, it means having a set of JNI functions that maps incoming bytecode calls of native
methods into the corresponding IScriptInterface functions, translating data formats as needed.

The good

The engine looses its ties to the scripting environment.
The scripting layer can be updated or changed separatedly.
The scripting layer can use a different vm.
Using a proper vm (jvm, mono, jvm) allows the definition of
one interface for multiple languages. Did I say jvm? Java, Python,
JavaScript, LUA, Scala and so on. Jvmjvmjvm. It's gpl too.
The new layer can be more consistently defined, documented and
Updated.
The new layer can be added along the old one. The current api
will continue to work as it does now, there is no interference.

The bad
Everyone has a plan 'till they get punched in the mouth.

 M.Tyson.

	Slide 1
	Slide 2
	Slide 3
	Slide 4

